Abstract

Abstract The main protection equipment in radial distribution networks are non-directional overcurrent relays (NDOCR) and fuses which are coordinated using the conventional protection coordination method. By installing distributed generations (DGs) in the network, reverse short-circuit currents (SCC), injected from DGs, can lead to false tripping of NDOCRs and false melting of fuses. In the previous studies, some methods have been proposed to overcome these issues using directional overcurrent relays, fault current limiter, and adaptive methods that relay on communication. The present paper proposes a new coordination method to prevent these issues without the need for installing a new equipment, by proposing a new set of selectivity constraints. Here, selectivity between equipment is established, and false tripping and false melting issues are mitigated. The coordination of protection equipment according to the proposed method requires the use of optimization algorithms, and therefore, the proposed method is formulated as a mixed-integer linear programming method to take advantage of mathematical optimization algorithms. The proposed coordination method is applied to a real distribution network and the results indicate the high efficiency of the proposed method in dealing with false relay tripping and fuse melting issues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.