Abstract
Suckling is a rhythmic jaw movement that is symmetrical on the left and right side and is highly coordinated with tongue movement. Thus, we investigated the neuronal mechanisms of the left/right and jaw/tongue coordinations during N-methyl-d-aspartate (NMDA)-induced fictive suckling using isolated brainstem–spinal cord preparations obtained from neonatal mice. We observed synchronous low-frequency rhythmic activity in the left/right trigeminal motor nerves, which differed from respiration, and high-frequency rhythmic trigeminal activity, which was side-independent. The low-frequency rhythmic trigeminal activity was also synchronized with the hypoglossal nerve activity. After a complete midline separation of the preparation or a partial midline transection of the brainstem from the anterior inferior cerebellar artery to the junction of the vertebral artery, the low-frequency rhythmic trigeminal activity disappeared, whereas the high-frequency rhythmic trigeminal activity and low-frequency rhythmic hypoglossal activity still remained. These results suggest that the neuronal network that generates low-frequency rhythmic activity likely contributes to the synchronized activity of the left/right jaw muscles and to the jaw/tongue muscles, where it sends its command to the trigeminal motoneurons mainly via the commissural pathway that crosses the transected midline region. Such a neuronal network may underlie the coordinated movements of the jaw and tongue during suckling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.