Abstract

Interest in dinuclear CuIIμ-thiolate and CuI disulfide complexes is triggered by their similarity with the CuA site and the possibility to control this redox equilibrium. Three new disulfide ligands L1, L3 and L4 were synthesized and reacted with CuI salts to investigate whether thiolate or disulfide species would form. The nature of L1 precludes the formation of CuIIμ-thiolate species, resulting in the formation of [CuI2(L1)(CH3CN)](BF4)2 which was characterized via single crystal X-ray crystallography. Pyrazole-containing ligands L3 and L4 form CuI complexes that are stable in solution in air for hours with half-wave potentials of approximately +0.55V versus Ag/AgCl, indicating high stability of the CuI state rather than the CuII state. The half-wave potentials of the CuI complexes with L1 and L2 are less positive, indicating that in order to allow formation of both CuIIμ-thiolate and CuI disulfide species, a half-wave potential of roughly 0V versus Ag/AgCl would be ideal. Furthermore, CuII crystal structures with L1, L2, L3 and L4 and different counterions were compared and analyzed. Pyrazolyl-containing ligands L3 and L4 form complexes that are very similar to the complexes with pyridyl-containing ligands L1 and L2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call