Abstract

There have been two major streams of research for the motion control of mobile robots: model-based deliberate control and sensor-based reactive control. Since the two schemes have complementary advantages and disadvantages, each cannot completely replace the other. There are a variety of environmental conditions that affect the performance of navigation. The motivation of this study is that multiple motion control schemes are required to survive in dynamic real environments. In this paper, we exploit two discrete motion controllers for mobile robots. One is the deliberate trajectory tracking controller and the other is the reactive dynamic window approach. We propose the selective coordination of two controllers on the basis of the generalized stochastic Petri net (GSPN) framework. The major scope of this paper is to clarify the advantage of the proposed controller based on the coordination of multiple controllers from the results of quantitative performance comparison among motion controllers. For quantitative comparison, both simulations and experiments in dynamic environments were carried out. In addition, it is shown that navigation experiences are accumulated in the GSPN formalism. The performance of navigation service can be significantly improved owing to the automatically stored experiences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.