Abstract
This paper presents the development and the experimental validation of a centralized coordination control scheme that is robust to communication constraints and individual tracking errors for a team of possibly heterogeneous marine vehicles. By assuming the existence of a lower level target tracking control layer, a centralized potential-field-based coordination scheme is proposed to drive a team of robots along a path that does not necessarily need to be defined a priori. Furthermore, the formation is allowed to hold its position (the vehicles hold their positions with regard to a static virtual leader), which is particularly appreciated in several marine applications. As it is important to guarantee stability and mission completion in adverse environments with limited communications, the centralized control scheme for coordination is constructed in a way that makes it robust to tracking errors and intermittent communication links. The study and developments presented in this paper are complemented with field experiments in which vehicles have coordinated their operation to keep in formation over a dynamic path and static points. This work considers two types of communication technologies. Firstly, standard high rate radio communications are used to drive the formation and, secondly, acoustic communications are employed to assess the performance and the robustness of the proposed approach to degraded and highly variable conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.