Abstract

A Voltage Source Converter based High Voltage Direct Current (VSC-HVDC) are the most efficient and reliable method for electrical power transmission and implementation of HVDC grids over long distances. Generally, a meshed HVDC transmission grid has major problems such as protection against dc faults and to manage the power flows between the lines. As Current Flow Controllers (CFCs) will be required to balance line currents between nodes in meshed-HVDC grids. Hybrid circuit breaker with forced commutation can interrupt the fault current and thus protect grids of HVDC from dc faults but the fault clearing time for the available dc breakers are not fast enough and reliable to provide adequate protection for dc faults on multi-terminal networks. In order to overcome these problems CFCs is interline with hybrid dc circuit breaker. So, CFC will be interline with Pro-active Hybrid DC-Circuit Breaker (PHCB) by suffling the switches orientation within the Load Commutation Switch (LCS). The CFC design and its control performance will be verified by MATLAB Simulink. The two cases are studied which include, an integrated system consisting of CFC with Circuit Breakers (CBs) and the separate design that includes CFC and CB separately that are compared and thus power losses can be reduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.