Abstract

Golay complementary waveforms are, by definition, able to generate narrow pulses with low sidelobes via coherent signal processing. However, while an ideal impulse can be obtained for target returns at zero-Doppler, significant sidelobes are observed at nonzero Doppler shifts. In this paper, a Generalized Binominal Design (GBD) procedure is proposed for the waveforms consisting of complementary sets in an attempt to reduce the Doppler-induced sidelobes. Our theoretical analysis as well as simulation results show that the proposed approach performs as good as existing Binominal Design method used for sidelobe suppression with Golay complementary waveforms and can also achieve around 28% enhancement on the Doppler resolution, with an acceptable loss in peak to peak-sidelobe ratio (PPSR).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.