Abstract

To explore mechanisms of B-incorporation in common chain silicates we have investigated synthetic diopside samples produced under boron-saturated conditions by 11B and 29Si magic-angle spinning (MAS) NMR and single-crystal NRA, FTIR, EMP and XRD/SREF techniques. Our samples contain 0.14–0.65 wt.% B 2O 3. NMR reveals that B is predominantly present in trigonal coordination in the clinopyroxene structure. This observation is supported by vibrational bands characteristic for B–O stretching in BO 3 groups in the range 1250–1400 cm −1 in polarised single crystal FTIR-spectra. Single crystal structure refinements suggest that boron replaces Si at the T site. Combined, these results suggest that boron replacement for Si at the T-site leads to disruption of one of the T–O bonds of the nominal clinopyroxene structure resulting in replacement of SiO 4 tetrahedra by BO 3 groups. Our results show that high concentrations of boron can be incorporated in the nominally boron-free diopside. Elevated B-concentrations in the present calcic clinopyroxenes are accompanied by modifications of the diopside crystal structure involving the breaking of one T–O bond and simultaneous formation of vacancies at the octahedral M2 site. These structural modifications destabilize the structure and constitute thereby limiting factors for incorporating higher boron concentrations in diopside.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.