Abstract

Chronic low back pain patients have been observed to show a reduced shift of thorax-pelvis relative phase towards out-of-phase movement with increasing speed compared to healthy controls. Here, we review the literature on this phase shift in patients with low back pain and we analyze the results presented in literature in view of the theoretical motivations to assess this phenomenon. Initially, based on the dynamical systems approach to movement coordination, the shift in thorax-pelvis relative phase with speed was studied as a self-organizing transition. However, the phase shift is gradual, which does not match a self-organizing transition. Subsequent emphasis in the literature therefore shifted to a motivation based on biomechanics. The change in relative phase with low back pain was specifically linked to expected changes in trunk stiffness due to ‘guarded behavior’. We found that thorax-pelvis relative phase is affected by several interacting factors, including active drive of thorax rotation through trunk muscle activity, stride frequency and the magnitude of pelvis rotations. Large pelvis rotations and high stride frequency observed in low back pain patients may contribute to the difference between patients and controls. This makes thorax-pelvis relative phase a poor proxy of trunk stiffness. In conclusion, thorax-pelvis relative phase cannot be considered as a collective variable reflecting the orderly behaviour of a complex underlying system, nor is it a marker of specific changes in trunk biomechanics. The fact that it is affected by multiple factors may explain the considerable between-subject variance of this measure in low back pain patients and healthy controls alike.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.