Abstract

AbstractSingle‐atom catalysts (SACs) are widely investigated in Fenton‐like reactions for environmental remediation, wherein their catalytic performance can be further improved by coordination structure modulation, but the relevant report is rare. Herein, a series of atomically dispersed cobalt catalysts with diverse coordination numbers (denoted as CoNx, x represents nitrogen coordination number) are synthesized and their peroxymonosulfate (PMS) conversion performance is explored. The catalytic specific activity of CoNx is found to be dependent on coordination number of single atomic Co sites, where the lowest‐coordinated CoN2 catalyst exhibits the highest specific activity in PMS activation, followed by under‐coordinated CoN3 and normal CoN4. Experimental and theoretical results reveal that reducing coordination number can increase the electron density of single Co atom in CoNx, which governs the Fenton‐like performance of CoNx catalysts. Specifically, the entire Co–pyridinic NC motif serves as active centers for PMS conversion, where the single Co atom, and pyridinic N‐bonded C atoms along with nitrogen vacancy neighboring the unsaturated Co–pyridinic N2 moiety account for PMS reduction and oxidation toward radical and singlet oxygen (1O2) generation, respectively. These findings provide a useful avenue to coordination number regulation of SACs for environmental applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.