Abstract

We describe a novel approach to functionalization of graphene oxide (GO) which allows for a facile generation of paramagnetic centers from two diamagnetic components. Coordination attachment of [Ni(cyclam)]2+ or [Ni(tet b)]2+ tetraazamacrocyclic cations to carboxylic groups of GO takes place under basic conditions in aqueous-based reaction medium. The procedure is very straightforward and does not require high temperatures or other harsh conditions. Changing the coordination geometry of Ni(II) from square-planar tetracoordinated to pseudooctahedral hexacoordinated brings about the conversion from low-spin to high-spin state of the metal centers. Even though the content of tetraazamacrocyclic complexes in functionalized GO samples was found to be relatively low (nickel content of ca. 1wt%, as determined by thermogravimetric analysis, elemental analysis and energy dispersive X-ray spectroscopy), room temperature magnetic susceptibility measurements easily detected the appearance of paramagnetic properties in GO+[Ni(cyclam)] and GO+[Ni(tet b)] nanohybrids, with effective magnetic moments of 1.95 BM and 2.2 BM for, respectively. According to density functional theory calculations, the main spin density is localized at the macrocyclic complexes, without considerable extension to graphene sheet, which suggests insignificant ferromagnetic coupling in the nanohybrids, in agreement with the results of magnetic susceptibility measurements. The coordination attachment of Ni(II) tetraazamacrocycles to GO results in considerable changes in Fourier-transform infrared and X-ray photoelectron spectra, as well as in GO morphology, as observed by scanning and transmission electron microscopy, atomic force and scanning tunneling microscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call