Abstract

The carbon-based catalysts exhibit excellent electrocatalytic and stable performance toward oxygen reduction reaction (ORR), which are expected to replace expensive and scarce Pt-based catalysts. However, how to regulate the interaction between silver and carrier carbon dots (CD) to improve electrocatalytic performance toward oxygen reduction reaction (ORR) and stability, has not been systematically studied. In this study, we in-situ synthesized fluorine and nitrogen co-doped CD anchoring Ag nanoparticles by UV irradiation reduction method. The peak potential, onset-potential and half-wave potential of F, N-CD@Ag-0.1 are 0.85 V, 1.056 V, and 0.9 V, respectively, indicating outstanding ORR performance. The current density of F, N-CD@Ag-0.1 remains 97.5 % after 50, 000 s, showing more excellent stability than Pt/C. The impressive ORR catalytic activity and stability of F, N-CD@Ag-0.1 could be attributed to the strong anchoring effect of nitrogen-doped CD on Ag. This effect leads to a significant interaction and charge transfer between Ag and CD, thereby enhancing the charge transfer process during the catalytic reaction. This project aims to design a carbon dot/silver composite catalyst with high ORR catalytic performance and favorable stability. The implementation of this project provides good theoretical guidance for the design of carbon nanomaterial-based catalytic systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.