Abstract

BackgroundWhile mini-trampolines have been used among a variety of groups including children as an intervention tool, the motor behavior children adopt while hopping on this soft, elastic surface is unknown. Identifying coordinative structures and their stability for hopping on a mini-trampoline is imperative for recommending future interventions and determining appropriateness to populations with motor dysfunctions. Research questionDo children demonstrate similar biomechanical and coordination patterns as adults while hopping on a mini-trampoline? MethodsFifteen adults aged 18–35 years and 14 children aged 7–12 years completed bouts of continuous two-legged hopping in-place on a stiff surface for 10 s at a time and on a mini-trampoline for 30 s at a time. 3-D motion capture tracked whole-body movement. We evaluated whole-body vertical stiffness as a ratio of peak vertical force and peak vertical displacement, as well as spatiotemporal parameters of hopping. Coordinative structures were evaluated as continuous relative phase angles of the foot, shank, thigh, and pelvis segments. Results and significanceAdults did not modify whole-body vertical stiffness on a mini-trampoline, while children increased whole-body vertical stiffness to compensate for the reduced surface stiffness. Both groups conserved the coordinative structure for hopping on a mini-trampoline by modulating hopping cycle timing. Moreover, children hopped with an adult-like coordinative structure, but required greater shank-thigh and thigh-pelvis out-of-phase motion. However, the consistency of their coordination was diminished compared to adults. Children aged 7–12 years old have formed a stable coordinative structure for spring-mass center-of-mass dynamics that is preserved on this soft, elastic surface. However, children might be developing control strategies for preferred whole-body vertical stiffness, particularly when required to dampen peak vertical forces. These results highlight the importance of evaluating the emerging motor behavior to manipulated environmental constraints, particularly when considering the utility and appropriateness of mini-trampoline interventions for children with motor dysfunctions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.