Abstract

Current projections for global mining indicate that unsustainable practices will cause supply problems for many elements, called critical raw materials, in the next 20 years. These include elements necessary for renewable technologies as well as artisanal sources. Energy critical elements (ECEs) comprise a group used for clean, renewable energy applications that are in low abundance in the Earth's crust or require an economic premium to extract from ores. Sustainable practices of acquiring ECEs is an important problem to address through fundamental research to provide alternative energy technologies such as wind turbines and electric vehicles at cheaper costs for our global energy generation and usage. Some of these green technologies incorporate rare-earth (RE) metals (Sc, Y and the lanthanides), which are challenging to separate from mineral sources because of their similar sizes (i.e., ionic radii) and chemical properties. The current process used to provide REs at requisite purities for these applications is counter-current solvent-solvent extraction, which is scalable and works efficiently for any ore composition. However, this method produces large amounts of caustic waste that is environmentally damaging, especially to areas in China that house major separation facilities. Advancement of the selectivity of this process is challenging since exact molecular speciation that affords separations is still relatively unknown. In this context, we developed a program to investigate new RE separations systems that were aimed at minimizing solvent use, controlled by molecular speciation, and could be targeted at problems in recycling these critical metals.The first ligand system that was developed to impart solubility differences between light and heavy rare-earth ions was [{(2-tBuNO)C6H4CH2}3N]3- (TriNOx3-) (graphic below). A differential solubility allowed for a separation of Nd and Dy of SFNd:Dy = ∼300 in a single step. In other words, a 50:50 Nd/Dy sample was enriched to give 95% pure Nd and Dy through a simple filtration, which is potentially impactful to recycling magnetic materials found in wind turbines. This separations system compares favorably to other state-of-the-art molecular extractants that are based on energetic differences of the thermodynamic parameter to affect separations for neighboring elements. This straightforward, thermodynamically driven method to separate REs primed our future research for new coordination chemistry approaches to separations.Another separations system was accomplished through the variable rate of a redox event from one arm of the TriNOx3- ligand. It was determined that the rate of this one electron oxidation, which operated through an electrochemical-chemical-electrochemical mechanism, was dependent on the identity of the RE ion. This kinetically driven separation afforded a separation factor (SF) of SFEu:Y = 75. We have also described other transformations such as ligand exchange, substituent dependent, and redox-driven chelation processes with well-defined speciation to afford purified RE materials. Recently, we determined that magnetic properties can be used to enhance both thermodynamic and kinetic RE separations processes to give an approximately 100% boost for pairs of paramagnetic/diamagnetic REs. These results have shown that both thermodynamic and kinetic RE separations were efficient for different selected RE binary pairs through coordination chemistry. The focus of this Account will detail the differences that are observed for RE separations when promoted by thermodynamic or kinetic factors. Overall, the development of rationally adjusted speciation of REs provides a basis for future industrial separations processes for technologies applied to ECEs derived from wind turbines, batteries for electric vehicles, and LEDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call