Abstract

Reduction of group 4 metallocene dichlorides with magnesium in the presence of cyclic disilylated stannylene or plumbylene phosphine adducts yielded the respective metallocene tetrylene phosphine complexes. Under the same conditions the use of the respective dimerized stannylene or plumbylene gave metallocene ditetrylene complexes. A computational analysis of these reactions revealed for all investigated compounds multiple-bonded character for the M–E(II) linkage, which can be rationalized in the case of the monotetrylene complex with the classical σ-donor/π-acceptor interaction. The strength of the M–E(II) bond increases descending group 4 and decreases going from Sn to its heavier congener Pb. The weakness of the Ti–E(II) bonds is caused by the significantly reduced ability of the titanium atom for d–p π-back-bonding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.