Abstract

The stability and reactivity studies of heavier di-atomic group-15 congeners of alkynes, e. g., the di-phosphorus (P≡P) compounds have been the topic of huge interest because of their contrasting transient properties and lower stability compared to those of the stable molecular di-nitrogen (N≡N). Herein, we depict the reactivity studies of the bis-cAAC-stabilized di-phosphorus (P2 ) having an inversely polarized phosphaalkene nature featuring the C=P double bonds with Au(I)Cl. Both the mono-, and the di-aurated phosphaalkenes with the formulae [(Me2 -cAAC=P)2 (AuCl)] (2), and [(Me2 -cAAC=P)2 (AuCl)2 ] (3), respectively have been isolated in the solid state. Moreover, for the first time, we have been able to isolate the cAAC-stabilized tetra-aurated elusive di-phosphorus-monoxide (P2 O) with the formula [(Cy-cAAC=P)-O-(P=cAAC-Cy)(AuCl)4 ] (5) in presence of oxygen. Complexes 2-3, 5 have been structurally characterized by single crystal X-ray diffraction, and further studied by NMR spectroscopy. Our findings reveal significant elongation of the CcAAC -P bonds in 2-3, 5, and the presence of aurophilic interaction in 5. Quantum chemical calculations, including density functional theory (DFT), and energy decomposition analysis coupled with natural orbitals for chemical valence (EDA-NOCV) have been performed to study the electron densities distribution and nature of bonding in 2-3, 5.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call