Abstract

Two novel metal complexes, that is, Ni (StmAn)2(4) and Cu (StmAn)2(5), were synthesized from unsymmetrical Schiff base ligand StmAn (3). The ligand was prepared by refluxing streptomycin (2) and aniline (1). They were characterized by elemental microanalysis, conductivity measurements, and spectroscopic techniques such as 1H NMR, FT-IR, ESI-mass, and electronic absorption spectral study. Interestingly, the study revealed metal coordination through azomethine nitrogen and N-atom of NH-CH3 of N-methyl-L-glucosamine unit of streptomycin. The electronic absorption spectral study supported an octahedral geometry for complex 4 and a tetrahedral geometry for complex 5. Particle size calculation by Scherrer’s formula indicated their nanocrystalline nature. The geometry optimization of the complexes was achieved by running an MM2 job in Gaussian supported Cs-ChemOffice ultra-12.0.1 and ArgusLab 4.0.1 version software. Based on SwissADME predictions, a theoretical drug profile was generated by analyzing absorption, distribution, metabolism, excretion, and toxicity (ADMET) scores of the compounds. They were screened for in vitro antibacterial activity study against four clinical pathogens such as E. coli, S. pneumoniae, P. vulgaris, and S. aureus. Minimum inhibitory concentration (MIC) study demonstrated greater inhibitory potency of complex (4) (0.024 g/L) for S. aureus relative to ligand (3) and complex (5). Studies show that metal complexes are more toxic to bacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.