Abstract
Hexanuclear coordination cages of the formula [(C5Me4R)M(C7H3NO4)]6 (M = Rh, Ir; R = Me, H) were obtained by stepwise reaction of [(C5Me4R)MCl2]2 with, first, AgOAc and, then, pyridine-3,5-dicarboxylic acid. Crystallographic analyses show that the cages adopt a distorted octahedral geometry with the pyridine-3,5-dicarboxylates functioning as dianionic, bridging ligands, each of which connects three different (C5Me4R)M fragments. The cages act as exoreceptors for the large alkali metal ions K(+) and Cs(+) but show low affinity for Na(+). Crystallographic and NMR spectroscopic analyses indicate that two metal ions can be coordinated to the surface of the cages. The respective binding sites comprise three carbonyl O-atoms from the bridging pyridine-3,5-dicarboxylate ligand.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.