Abstract

Ternary organic/inorganic/polymeric hybrid material PVP-Eu-(DBM-Si)3 (DBM=dibenzoylmethane; PVP=poly(4-vinylpyridine)) have been synthesized through the coordination bonds. The precursor DBM-Si is obtained by the modification of DBM molecule with a cross-linking reagent TEPIC (3-(triethoxysilyl)-propyl isocyanate), which is used to form the inorganic Si–O–Si networks with TEOS (tetraethoxysilane) after a hydrolysis and polycondensation process. PVP, which is obtained through the polymerization reaction using 4-vinylpyridine as the monomer in the presence of BPO (benzoyl peroxide), is used to form the organic polymeric C–C chains. For comparison, the binary organic/inorganic hybrid material Eu-(DBM-Si)3 was also synthesized simultaneously. FT-IR (Fourier-transform infrared spectra), UV (ultraviolet absorption spectra), UV-DR (ultraviolet–visible diffuse reflection absorption spectra), SEM (scanning electron micrograph), PL (photoluminescence spectroscopy) and LDT (luminescence decay time) measurements are used to investigate the physical properties of the obtained hybrid materials. The results reveal that the ternary hybrids presents more regular morphology, higher red/orange ratio, stronger luminescent intensity, higher 5D0 luminescence quantum efficiency and longer lifetime than the binary one, suggesting the property of the overall hybrid system is improved with the introduction of the organic polymer PVP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call