Abstract
Coordination polymers (CPs) and metal-organic frameworks (MOFs) constitute a new class of antibacterial materials. Interest in them stems from their wide range of topology, dimensionality, and secondary building units that can be tuned by an appropriate choice of metal ions and ligands. In particular, silver-based species feature good antibacterial properties. In this study, we explored the coordination of three acetylenic dithioether RSCH2C≡CCH2SR [R = phenyl (LPh), cyclohexyl (LCy), or tert-butyl (LtBu)] ligands on several silver salts (silver tosylate, silver triflate, and silver trifluoroacetate). The crystallographic characterization evidenced the formation of a molecular macrocycle and six CPs with different dimensionalities, ranging from one to two dimensions. In most cases, they are composed of four-coordinated silver atoms in a tetrahedral environment. Their antibacterial activity was investigated against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. All CPs present good antibacterial properties against the tested bacteria with minimal inhibitory concentrations ranging from 5 to 40 μg of Ag/mL. Interestingly, we found that these values could not be correlated to their architecture or morphology or to the amount of silver released. The cytotoxicity of these compounds was also evaluated on normal human dermal fibroblasts, and three of these CPs were found to be biocompatible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.