Abstract

Molecular cages have attracted great attention because of their fascinating topological structures and well-defined functional cavities. These discrete cages were usually fabricated by coordination assembly approach, a process employing directional metal-ligand coordination bonds due to the nature of the divinable coordination geometry and the required lability to encode dynamic equilibrium/error-correction. Compared to these coordination molecular cages with mononulcear metal-nodes, an increasing number of molecular cages featuring dinuclear and then polynuclear metal-cluster nodes have been synthesized. These metal-cluster-based coordination cages (MCCCs) combine the merits of both metal clusters and the cage structure, and exhibit excellent performances in catalysis, separation, host-guest chemistry and so on. In this review, we highlight the syntheses of MCCCs and their potential functions that is donated by the metal-cluster nodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.