Abstract

In order to sufficiently protect active personnel and physical environment from hazardous leaks, recent industrial practices integrate innovative multi-modalities so as to maximize response efficiency. Since the early detection of such incidents portrays the most critical factor for providing efficient response measures, the continuous and reliable surveying of industrial spaces is of primary importance. Current study develops a surveying mechanism, utilizing a swarm of heterogeneous aerial mobile sensory platforms, for the continuous monitoring and detection of CH4 dispersed gas plumes. In order to timely represent the CH4 diffusion progression incident, the research concerns a simulated indoor, geometrically complex environment, where early detection and timely response are critical. The primary aim was to evaluate the efficiency of a novel multi-agent, closed-loop, algorithm responsible for the UAV path-planning of the swarm, in comparison with an efficient a state-of-the-art path-planning EGO methodology, acting as a benchmark. Abbreviated as Block Coordinate Descent Cognitive Adaptive Optimization (BCD-CAO) the novel algorithm outperformed the Efficient Global Optimization (EGO) algorithm, in seven simulation scenarios, demonstrating improved dynamic adaptation of the aerial UAV swarm towards its heterogeneous operational capabilities. The evaluation results presented herein, exhibit the efficiency of the proposed algorithm for continuously conforming the mobile sensing platforms’ formation towards maximizing the total measured density of the diffused volume plume.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.