Abstract

Semiarid lands of North America are vulnerable to invasion by exotic forbs that frequently have an extended phenology compared with native herbaceous species. We hypothesized that photosynthetic stems, rosette leaves, and cauline leaves of Centaurea maculosa Lam. (knapweed) would differ in ecophysiological specialization and that these differences would enhance plant carbon uptake across seasonal variations in microclimate. Photosynthesis, water relations, and morphological features of C. maculosa were measured under natural variations in temperature and soil water, and under manipulated light environments, in adults compared with seedlings having only rosette leaves. Carbon gain was greater in adults than in seedlings owing to high photosynthesis in cauline and rosette leaves when water was abundant. Otherwise, photosynthesis was relatively lower but persistent through drought in all tissues and ages until senescence. Photosynthesis decreased with water stress in all tissues except stems. Stems comprised up to 36% of photosynthetic area following senescence of rosette leaves during seasonal drought. Seedlings expressed shade acclimation compared with rosette and especially cauline leaves of adults, although adult rosette leaves had flexible photosynthetic light responses. Contrasting ecophysiological specializations of photosynthetic tissues enhance carbon gain of adult C. maculosa as light, water, and temperature vary during its relatively long growth season.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call