Abstract

In this article, for a marine aerial-surface heterogeneous (MASH) system composed by a quadrotor unmanned aerial vehicle (UAV) and an unmanned surface vehicle (USV) with heterogeneity, completely unknown dynamics and disturbances, the accurate trajectory-tracking problem is solved by creating a novel coordinated trajectory-tracking control (CTTC) scheme. A family of coordinate transformations are devised to convert the MASH system tracking error dynamics into translation–rotation cascade manners, whereby the heterogeneity is removed and finite-time observers for complex unknowns are facilitated. In conjunction with sliding mode based rotation error dynamics, distributed tracking controllers for the quadrotor UAV and the USV are independently synthesized such that cascade tracking error dynamics are globally asymptotically stable. With the aid of cascade and Lyapunov analysis, the entire CTTC solution to the accurate trajectory-tracking problem of the MASH system is eventually put forward. Simulation results and comprehensive comparisons on a prototype MASH system demonstrate the effectiveness and superiority of the proposed CTTC scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.