Abstract

A mixed integer programming approach is proposed for a long-term, integrated scheduling of material manufacturing, material supply and product assembly in a customer driven supply chain. The supply chain consists of three distinct stages: manufacturer/supplier of product-specific materials (parts), producer where finished products are assembled according to customer orders and a set of customers who generate final demand for the products. The manufacturing stage consists of identical production lines in parallel and the producer stage is a flexible assembly line. The overall problem is how to coordinate manufacturing and supply of parts and assembly of products such that the total supply chain inventory holding cost and the production line start-up and parts shipping costs are minimized. A monolithic approach, where the manufacturing, supply and assembly schedules are determined simultaneously, is compared with a hierarchical approach. Numerical examples modeled after a real-world integrated scheduling in a customer driven supply chain in the electronics industry are presented and some computational results are reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.