Abstract

This paper investigates the load frequency analysis (LFC) of two area interconnected realistic power system with multi-fuel generating units. Each area consists of thermal, hydro and gas power generating plants. A new evolutionary algorithm is proposed, named Hybrid artificial electric field (HAEFA) optimization algorithm and integral square error (ISE) performance index is utilized to find classical PI/PID controller gains. Later, total analysis is carried out in presence of PID an account of its superiority functioning rather than PI. Moreover, the efficacy of the presented algorithm is deliberated by testing on two area conventional power system model of thermal unit with structure of non-reheat turbines and also on sphere benchmark function. As the load variation is dynamic in nature, mitigating the area frequency fluctuations and tie-line power variations could not been fulfilled by primary regulator and secondary controller. Effective governing needs additional devices. Therefore, superconducting magnetic energy storage (SMES) devices are incorporated in both areas in addition to Thyristor controlled series capacitor (TCSC) is connected in tie-line. Results, shows the system performance has been significantly improved with SMES and TCSC in the presence of HAEFA based PID controller. The potency of the HAEFA algorithm is compared with other optimizations covered in literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call