Abstract
We describe algorithmic enhancements to a decision-support tool that residential consumers can utilize to optimize their acquisition of electrical energy services. The decision-support tool optimizes energy services provision by enabling end users to first assign values to desired energy services, and then scheduling their available distributed energy resources (DER) to maximize net benefits. We chose particle swarm optimization (PSO) to solve the corresponding optimization problem because of its straightforward implementation and demonstrated ability to generate near-optimal schedules within manageable computation times. We improve the basic formulation of cooperative PSO by introducing stochastic repulsion among the particles. The improved DER schedules are then used to investigate the potential consumer value added by coordinated DER scheduling. This is computed by comparing the end-user costs obtained with the enhanced algorithm simultaneously scheduling all DER, against the costs when each DER schedule is solved separately. This comparison enables the end users to determine whether their mix of energy service needs, available DER and electricity tariff arrangements might warrant solving the more complex coordinated scheduling problem, or instead, decomposing the problem into multiple simpler optimizations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.