Abstract

This paper presents a road-network search route planning algorithm by which multiple autonomous vehicles are able to efficiently visit every road identified in the map in the context of the Chinese postman problem. Since the typical Chinese postman algorithm can be applied solely to a connected road-network in which ground vehicles are involved, it is modified to be used for a general type of road map including unconnected roads as well as the operational and physical constraints of unmanned aerial vehicles (UAVs). For this, a multi-choice multi-dimensional knapsack problem is formulated to find an optimal solution minimising flight time and then solved via mixed integer linear programming. To deal with the dynamic constraints of the UAVs, the Dubins theory is used for path generation. In particular, a circular–circular–circular type of the Dubins path is exploited based on a differential geometry to guarantee that the vehicles follow the road precisely in a densely distributed road environment. Moreover, to overcome the computational burden of the multi-choice multi-dimensional knapsack algorithm, a nearest insertion and auction-based approximation algorithm is newly introduced. The properties and performance of the proposed algorithm are evaluated via numerical simulations operating on a real village map and randomly generated maps with different parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.