Abstract

Biological nitrogen fixation, the reduction of chemically inert dinitrogen to bioavailable ammonia, is a central process in the global nitrogen cycle highly relevant for life on earth. N2 reduction to NH3 is catalyzed by nitrogenases exclusively synthesized by diazotrophic prokaryotes. All diazotrophs have a molybdenum nitrogenase containing the unique iron-molybdenum cofactor FeMoco. In addition, some diazotrophs encode one or two alternative Mo-free nitrogenases that are less efficient at reducing N2 than Mo-nitrogenase. To permit biogenesis of Mo-nitrogenase and other molybdoenzymes when Mo is scarce, bacteria synthesize the high-affinity molybdate transporter ModABC. Generally, Mo supports expression of Mo-nitrogenase genes, while it represses production of Mo-free nitrogenases and ModABC. Since all three nitrogenases and ModABC can reach very high levels at suitable Mo concentrations, tight Mo-mediated control saves considerable resources and energy. This review outlines the similarities and differences in Mo-responsive regulation of nitrogen fixation and molybdate transport in diverse diazotrophs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.