Abstract
Deoxyguanosine kinase (DGUOK) deficiency causes mtDNA depletion and mitochondrial dysfunction. We reported long survival of DGUOK knockout (Dguok−/−) mice despite low (<5%) mtDNA content in liver tissue. However, the molecular mechanisms enabling the extended survival remain unknown. Using transcriptomics, proteomics and metabolomics followed by in vitro assays, we aimed to identify the molecular pathways involved in the extended survival of the Dguok−/− mice. At the early stage, the serine synthesis and folate cycle were activated but declined later. Increased activity of the mitochondrial citric acid cycle (TCA cycle) and the urea cycle and degradation of branched chain amino acids were hallmarks of the extended lifespan in DGUOK deficiency. Furthermore, the increased synthesis of TCA cycle intermediates was supported by coordination of two pyruvate kinase genes, PKLR and PKM, indicating a central coordinating role of pyruvate kinases to support the long-term survival in mitochondrial dysfunction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.