Abstract

In this paper, we construct a framework to describe and study the coordinated output regulation problem for multiple heterogeneous linear systems. Each agent is modeled as a general linear multiple-input multiple-output system with an autonomous exosystem which represents the individual offset from the group reference for the agent. The multi-agent system as a whole has a group exogenous state which represents the tracking reference for the whole group. Under the constraints that the group exogenous output is only locally available to each agent and that the agents have only access to their neighbors’ information, we propose observer-based feedback controllers to solve the coordinated output regulation problem using output feedback information. A high-gain approach is used and the information interactions are allowed to be switching over a finite set of networks containing both graphs that have a directed spanning tree and graphs that do not. Simulations are shown to validate the theoretical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call