Abstract

Electromyographic recordings from individual identified ankle muscles of the 7-day chick embryo (stage 31) were used to determine the organization of motor output at a developmental stage shortly after the onset of spontaneous motility in the leg. During spontaneous motility of the embryo, the electromyographic recordings from the gastrocnemius, peroneus, and tibialis muscles displayed bursts of motor unit activity which alternated with periods of little or no activity. Since the control of skeletal muscle in the chick embryo is neurogenic rather than myogenic, these findings imply that the motoneurons to a given muscle are driven by a common source. Since flexor and extensor muscles are attivated at different times, different central connections to flexor and extensor motoneurons must be present in the central nerbous system of the 7-day embryo. Moreover, since inhibition is known to play an important role in the selective activation of agonist and antagonist muscles, the present results suggest that functional inhibitory synapses may be present in the lumbosacral central nervous system at this stage of development. The basic pattern of muscle activation observed in the 7-day embryo is similar to that seen in older embryos. Since these patterns appear prior to the time at which motor responses to sensory stimulation of the leg can be demonstrated, it is likely that the neural pattern generating circuits for selective activation of muscles are established in the central nervous system without reliance on functional reflexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.