Abstract
In this paper, coordinated motion control of underwater vehicle-manipulator system (UVMS) is addressed. In order for UVMS to carry out manipulation tasks alone, motion planning with consideration of redundancy and tracking control under disturbances are required. We propose redundancy resolution with optimization of restoring moments as motion planning and inverse optimal nonlinear Hinfin control as robust tracking controller. Numerical simulations are presented to demonstrate performance of proposed coordinated motion control of UVMS. As a result, control input for tracking is reduced and UVMS can track generated trajectories under parameter uncertainties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.