Abstract

This analytic and experimental study proposes a control algorithm for coordinated position and force control for autonomous multi-limbed mobile robotic systems. The technique is called Coordinated Jacobian Transpose Control (CJTC). Such position/force control algorithms will be required if future robotic systems are to operate effectively in unstructured environments. Generalized Control Variables (GCVs), express in a consistent and coordinated manner the desired behavior of the forces exerted by the multi-limbed robot on the environment and a system‘s motions. The effectiveness of this algorithm is demonstrated in simulation and laboratory experiments on a climbing system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.