Abstract

There often exists a “one-to-many” relationship between a transcription factor and a multitude of binding sites throughout the genome. It is commonly assumed that transcription factor binding motifs remain largely static over the course of evolution because changes in binding specificity can alter the interactions with potentially hundreds of sites across the genome. Focusing on regulatory motifs overrepresented at specific locations within or near the promoter, we find that a surprisingly large number of cis-regulatory elements have been subject to coordinated genome-wide modifications during vertebrate evolution, such that the motif frequency changes on a single branch of vertebrate phylogeny. This was found to be the case even between closely related mammal species, with nearly a third of all location-specific consensus motifs exhibiting significant modifications within the human or mouse lineage since their divergence. Many of these modifications are likely to be compensatory changes throughout the genome following changes in protein factor binding affinities, whereas others may be due to changes in mutation rates or effective population size. The likelihood that this happened many times during vertebrate evolution highlights the need to examine additional taxa and to understand the evolutionary and molecular mechanisms underlying the evolution of protein–DNA interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.