Abstract
In this paper we propose a distributed dynamic controller for sharing frequency control reserves of asynchronous AC systems connected through a multi-terminal HVDC (MTDC) grid. We derive sufficient stability conditions, which guarantee that the frequencies of the AC systems converge to the nominal frequency. Simultaneously, the global quadratic cost of power generation is minimized, resulting in an optimal distribution of generation control reserves. The proposed controller also regulates the voltages of the MTDC grid, asymptotically minimizing a quadratic cost function of the deviations from the nominal voltages. The proposed controller is tested on a high-order dynamic model of a power system consisting of asynchronous AC grids, modelled as IEEE 14 bus networks, connected through a six-terminal HVDC grid. The performance of the controller is successfully evaluated through simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.