Abstract

The stabilization of the replisome complex is essential in order to achieve highly processive DNA replication and preserve genomic integrity. Conversely, it would also be advantageous for the cell to abrogate replisome functions to prevent inappropriate replication when fork progression is adversely perturbed. However, such mechanisms remain elusive. Here we report that replicative DNA polymerases and helicases, the major components of the replisome, are degraded in concert in the absence of Swi1, a subunit of the replication fork protection complex. In sharp contrast, ORC and PCNA, which are also required for DNA replication, were stably maintained. We demonstrate that this degradation of DNA polymerases and helicases is dependent on the ubiquitin-proteasome system, in which the SCFPof3 ubiquitin ligase is involved. Consistently, we show that Pof3 interacts with DNA polymerase ε. Remarkably, forced accumulation of replisome components leads to abnormal DNA replication and mitotic catastrophes in the absence of Swi1. Swi1 is known to prevent fork collapse at natural replication block sites throughout the genome. Therefore, our results suggest that the cell elicits a program to degrade replisomes upon replication stress in the absence of Swi1. We also suggest that this program prevents inappropriate duplication of the genome, which in turn contributes to the preservation of genomic integrity.

Highlights

  • Initiation of DNA replication is directed by the formation of the pre-replication complex at the origin of replication [1]

  • Replication stress interferes with the normal progression of the replication fork

  • We found that replisome components become highly unstable and degraded when replication forks are perturbed in the absence of Swi1, a subunit of replication fork protection complex

Read more

Summary

Introduction

Initiation of DNA replication is directed by the formation of the pre-replication complex (pre-RC) at the origin of replication [1]. To initiate actual DNA synthesis, additional factors are needed to facilitate the unwinding of origins and generation of replication forks. These factors include Cdc, goichi-ni-san (GINS), replication protein A (RPA), proliferating cell nuclear antigen (PCNA), and other accessory factors prior to the loading of DNA polymerases. Together, these factors form the replisome complex at the replication fork [1]. How the cell maintains the integrity of the replisome is not well understood

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call