Abstract

To overcome the problems existing in the practical application of traditional in-wheel motors used for electric vehicles, an integrated double rotor in-wheel motor was proposed, which can realize three drive modes to meet variable operating condition requirements of the vehicle. The process of switching between different drive modes affects the ride comfort of a vehicle. Taking the mode switching from a single inner motor drive to a dual-motor coupling drive as a research object, a dynamic modeling method of drive mode switching based on the switching system was proposed. According to the critical conditions of each state transition, the switching rules expressed by the segmental constant function were designed. At the engagement stage of electromagnetic clutch II, the torque coordination control strategy based on model predictive control (MPC) and control allocation was proposed. The simulation results show that the proposed strategy can effectively reduce the impact degree of a vehicle and the slipping-friction work of the clutch on the premise of ensuring the fast response of mode switching and the steady increase in vehicle speed. The switching quality of the mode-switching process is effectively improved. In addition, the drive mode switching control of the double rotor in-wheel motor prototype was tested, which proves its ability to operate in multi-drive mode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call