Abstract
The high sensitivity of scotopic vision depends on the efficient retinal processing of single photon responses generated by individual rod photoreceptors. At the first synapse in the mammalian retina, rod outputs are pooled by a rod “ON” bipolar cell, which uses a G-protein signaling cascade to enhance the fidelity of the single photon response under conditions where few rods absorb light. Here we show in mouse rod bipolar cells that both splice variants of the Go α subunit, Gαo1 and Gαo2, mediate light responses under the control of mGluR6 receptors, and their coordinated action is critical for maximizing sensitivity. We found that the light response of rod bipolar cells was primarily mediated by Gαo1, but the loss of Gαo2 caused a reduction in the light sensitivity. This reduced sensitivity was not attributable to the reduction in the total number of Go α subunits, or the altered balance of expression levels between the two splice variants. These results indicate that Gαo1 and Gαo2 both mediate a depolarizing light response in rod bipolar cells without occluding each other’s actions, suggesting they might act independently on a common effector. Thus, Gαo2 plays a role in improving the sensitivity of rod bipolar cells through its action with Gαo1. The coordinated action of two splice variants of a single Gα may represent a novel mechanism for the fine control of G-protein activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.