Abstract

Damping contribution from wind farms (WFs) is likely to become a mandatory requirement as a part of the grid codes. For remote offshore WFs, connected through a voltage source converter (VSC)-based direct current link, the most convenient option for the onshore transmission system operator (TSO) is to modulate the reactive power at the onshore VSC within their own jurisdiction. In this paper, we show that supplementary control through the onshore VSC alone, although attractive for TSOs, could result in undesirable voltage variations in the onshore grid. On the other hand, modulation of active power output of the wind turbine generators (WTG) alone turns out to be inadequate due to the limited overload capability of the WTGs. Coordinated control over both onshore VSC and aggregated WF output overcomes the above limitations and is shown to be effective for power oscillation damping. A homotopy approach is used to design the coordinated controller, which can be implemented locally (at offshore WF and onshore converter site) using a decentralized architecture. This is a bilinear matrix inequality problem, which is solved by transforming these constraints into linear matrix inequality constraints. Case studies on two test systems show that the proposed controller yields similar system dynamic response as supplementary control through the WF alone.

Highlights

Read more

Summary

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.