Abstract

This paper presents a method for coordinated control of hybrid four-wheel drive (4WD) vehicles (H4Vs), which consists of a front internal combustion engine and independent motor-driven rear wheels. H4Vs are equipped with electronic stability control (ESC), active front steering (AFS), and 4WD. For maneuverability and lateral stability, a yaw moment controller is designed. After generating a control yaw moment with a direct yaw moment control, it is distributed with ESC, AFS, and 4WD. Several actuator configurations of ESC, AFS, and 4WD are presented in the framework of the weighted pseudo-inverse based control allocation. Simulation-based tuning is proposed to improve the performance of the yaw moment distribution. Simulations show that the proposed method is effective for the coordinated control of H4Vs for enhanced maneuverability and lateral stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.