Abstract

A typical approach studied for the guidance of next generation space manipulators (satellites with robotic arms aimed at autonomously performing on-orbit operations) is to decouple the platform and the arm maneuvers, which are supposed to happen sequentially, mainly because of safety concerns. This control is implemented in this work as a two-stage Sequential control, where a first stage calls for the motion of the platform and the second stage calls for the motion of the manipulator. A second novel strategy is proposed, considering the platform and the manipulator as a single multibody system subject to a Coordinated control, with the goal of approaching and grasping a target spacecraft. At the scope, a region that the end effector can reach by means of the arm motion with limited reactions on the platform is identified (the so called Reaction Null workspace). The Coordinated control algorithm performs a gain modulation (finalized to a balanced contribution of the platform and arm motion) as a function of the target position within this Reaction Null map. The result is a coordinated maneuver in which the end effector moves thanks to the platform motion, predominant in a first phase, and to the arm motion, predominant when the Reaction-Null workspace is reached. In this way the collision avoidance and attitude over-control issues are automatically considered, without the need of splitting the mission in independent (and overall sub-optimal) segments.The guidance and control algorithms are first simulated by means of a multibody code, and successively tested in the lab by means of a free floating platform equipped with a robotic arm, moving frictionless on a flat granite table thanks to air bearings and on-off thrusters; the results will be discussed in terms of optimality of the fuel consumption and final accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.