Abstract

SummarySuccess of any needle-based medical procedures depends on accurate placement of the needle at the target location. However, accurate targeting and control of flexible self-actuating (active) needle are challenging. We have developed a shape memory alloy-actuated flexible needle steered by a 3D Cartesian robot and performed a comparative study of four, non-model-based, coordinated control methodologies for the combined robot steering and flexible-needle insertion process for surgical interventions. Investigated four controllers are: proportional–integral–derivative (PID), PID with the cubic of positional error term (PID-P3), static PID sliding mode controller, and robust adaptive PID sliding mode controller (RAPID-SMC). Relative efficacies of these controllers are demonstrated by performing experiements using a tissue-mimicking soft material phantom. Results from experiments have reavealed that RAPID-SMC is superior to other three controllers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.