Abstract
Nowadays, large scale intermittent renewable energy is being integrated to power systems as a solution for the low-carbon development worldwide. With the increasing penetration of renewable power generation, system frequency stability is becoming more and more serious. To increase the utilization of renewable energy, electric vehicles (EVs) are suggested to participate in load frequency control (LFC) through aggregators due to their vehicle-to-grid (V2G) capability and quick response characteristic, which is denoted as EV-LFC controller in this paper. In order to fully take the advantages of EVs in the LFC, this paper presents a coordinated control strategy between EV-LFC controller and traditional power plants based LFC (PP-LFC) controller for frequency regulation. In this strategy, the EV-LFC has a priority in response than the PP-LFC when the system deviation violates its acceptable range. However, the LFC integrating EVs is with inevitable time delays due to the data and control signal transmission. Meanwhile, the system inertia uncertainty caused by renewable energy in power system may also cause instability problem. For this reason, an improved robust stability criterion is proposed to estimate the asymptotically stable for LFC system considering the inertia uncertainty and time-varying delays simultaneously. Additionally, a PI controller for EV-LFC controller is used to enhance the system frequency stability. Finally, the effect of increasing EVs number on the frequency stability is investigated, which may guide system operator to utilize EVs to the LFC properly. Case studies are carried out based on a simplified Great Britain (GB) power system. Simulation results show that the proposed coordination strategy can not only provide effective frequency regulation, but also reduce the output of traditional power plants, in which the inertia uncertainty and time delays are properly considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.