Abstract

In this study, the authors co-ordinated collective motion patterns for a group of autonomous vehicles with Cartesian co-ordinate coupling in a discrete-time setting and present experimental results to validate the theoretical results. The collective motion patterns include rendezvous, circular patterns and logarithmic spiral patterns. The authors first study the collective motion patterns for a group of autonomous vehicles with single-integrator kinematics in a discrete-time setting when there exists time delay. The conditions on the network topology, the sampling period, the time delay and the Euler angle are presented such that different collective motion patterns can be achieved. The collective motion patterns for a group of autonomous vehicles with double-integrator dynamics in a discrete-time setting in the presence of relative damping are studied. The conditions on the network topology, the sampling period, the damping factor and the Euler angle are presented such that different collective patterns can be achieved. Finally, the theoretical results are experimentally validated on a multi-robot platform.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call