Abstract

Smoking is associated with a wide variety of adverse health outcomes including cancer, chronic obstructive pulmonary disease, diabetes, depression, and heart disease. Unfortunately, the molecular mechanisms through which these effects are conveyed are not clearly understood. To examine the potential role of epigenetic factors in these processes, we examined the relationship of smoking to genome wide methylation and gene expression using biomaterial from two independent samples, lymphoblast DNA and RNA (n = 119) and lung alveolar macrophage DNA (n = 19). We found that in both samples current smoking status was associated with significant changes in DNA methylation, in particular at the aryl hydrocarbon receptor repressor (AHRR), a known tumor suppressor. Both baseline DNA methylation and smoker associated DNA methylation signatures at AHRR were highly correlated (r = 0.94 and 0.45, respectively). DNA methylation at the most differentially methylated AHRR CpG residue in both samples, cg0557592, was significantly associated with AHRR gene expression. Pathway analysis of lymphoblast data (genes with most significant methylation changes) demonstrated enrichment in protein kinase C pathways and in TGF beta signaling pathways. For alveolar macrophages, pathway analysis demonstrated alterations in inflammation-related processes. We conclude that smoking is associated with functionally significant genome wide changes in DNA methylation in both lymphoblasts and pulmonary macrophages and that further integrated investigations of these epigenetic effects of smoking on carcinogenesis and other related co-morbidities are indicated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.