Abstract
The prevailing model of cerebellar learning states that climbing fibers (CFs) are both driven by, and serve to correct, erroneous motor output. However, this model is grounded largely in studies of behaviors that utilize hardwired neural pathways to link sensory input to motor output. To test whether this model applies to more flexible learning regimes that require arbitrary sensorimotor associations, we developed a cerebellar-dependent motor learning task that is compatible with both mesoscale and single-dendrite-resolution calcium imaging in mice. We found that CFs were preferentially driven by and more time-locked to correctly executed movements and other task parameters that predict reward outcome, exhibiting widespread correlated activity in parasagittal processing zones that was governed by these predictions. Together, our data suggest that such CF activity patterns are well-suited to drive learning by providing predictive instructional input that is consistent with an unsigned reinforcement learning signal but does not rely exclusively on motor errors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.