Abstract

Brain development during childhood and early adolescence is characterized by global changes in brain architecture. Neuroimaging studies have revealed overall decreases in cortical thickness (CT) and increases in fractional anisotropy (FA). Furthermore, previous studies have shown that certain cortical regions display coordinated growth during development. However, there is significant heterogeneity in the timing and speed of these developmental transformations, and it is still unclear whether white and grey matter changes are co-localized. In this multimodal neuroimaging study, we investigated the relationship between grey and white matter developmental changes and asynchronous maturation within brain regions in 249 normally developing children between the ages 7-14. We used structural magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) to analyze CT and FA, respectively, as well as their covariance across development. Consistent with previous studies, we observed overall cortical thinning with age, which was accompanied by increased FA. We then compared the coordinated development of grey and white matter as indexed by covariance measures. Covariance between grey matter regions and the microstructure of white matter tracts connecting those regions were highly similar, suggesting that coordinated changes in the cortex were mirrored by coordinated changes in their respective tracts. Examining within-brain divergent trajectories, we found significant structural decoupling (decreased covariance) between several brain regions and tracts in the 9- to 11-year-old group, particularly involving the forceps minor and the regions that it connects to. We argue that this decoupling could reflect a developmental pattern within the prefrontal region in 9- and 11-year-old children, possibly related to the significant changes in cognitive control observed at this age.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.