Abstract

In a cellular wireless system, users located at cell edges often suffer significant out-of-cell interference. Assuming each base station is equipped with multiple antennas, we can model this scenario as a multiple-input single-output (MISO) interference channel. In this paper we consider a coordinated beamforming approach whereby multiple base stations jointly optimize their downlink beamforming vectors in order to simultaneously improve the data rates of a given group of cell edge users. Assuming perfect channel knowledge, we formulate this problem as the maximization of a system utility (which balances user fairness and average user rates), subject to individual power constraints at each base station. We show that, for the single-carrier case and when the number of antennas at each base station is at least two, the optimal coordinated beamforming problem is NP-hard for both the harmonic mean utility and the proportional fairness utility. For general utilities, we propose a cyclic coordinate descent algorithm, which enables each transmitter to update its beamformer locally with limited information exchange and establish its global convergence to a stationary point. We illustrate its effectiveness in computer simulations by using the space matched beamformer as the benchmark.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.