Abstract

During gastrulation in vertebrates, mesenchymal cells at the anterior end of the presomitic mesoderm (PSM) periodically compact, transiently epithelialize and detach from the posterior PSM to form somites. In the prevailing clock-and-wavefront model of somitogenesis, periodic gene expression, particularly of Notch and Wnt, interacts with an FGF8-based thresholding mechanism to determine cell fates. However, this model does not explain how cell determination and subsequent differentiation translates into somite morphology. In this paper, we use computer simulations of chick somitogenesis to show that experimentally-observed temporal and spatial patterns of adhesive N-CAM and N-cadherin and repulsive EphA4-ephrinB2 pairs suffice to reproduce the complex dynamic morphological changes of somitogenesis in wild-type and N-cadherin (-/-) chick, including intersomitic separation, boundary-shape evolution and sorting of misdifferentiated cells across compartment boundaries. Since different models of determination yield the same, experimentally-observed, distribution of adhesion and repulsion molecules, the patterning is independent of the details of this mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.